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I. INTRODUCTION

There has been an increasing interest by the Army in "smart nunitions",
Smart munitions are those guided to their targets by laser, millimeter wave,
radar or some other means. They require in-flight controllability which is
usually achieved by rotatable control surfaces (fins/tails/wings/canards).
These surfaces usually require some small gaps or “clearances" with the body
of the projectile as depicted in Figure 1. These "small" gaps always result
in loss of 1ift prodiced by the fins, thus reducing fin effectiveness. These
losses were studied in detail by Mikhaill for the transonic speed regime (M =
0.8-1,2) and small gaps (g/D < 0.08 where D is the body diameter)., The speci-
fic range of interest of Reference 1 was dictated by the Copperhead guided-
projectile case study. The correlation of Reference 1 is not applicable in
the sypersonic speed regime (M = 1,2-4.0) or for large gaps (g/D > 0.08),

Large gap heights, defined in this study as those with q > 0.08 D, are
used for reasons other than body clearance. for maneuverability of gquided

missiles and projectiles, the vehicle must be less statically stable so that
the required control surface can be small and yet sufficient to "steer" the
vehicle into its desired path., To reduce static stability in the guided phase
of the vehicle, a fin-body gap may be created by actuators that push the fins

away from the body. These gaps are usually larger than those required only to
clear the hody to allow the moticn of the fin,

The present study covers the Mach number and gap height ranges which were
not covered in Reference 1. Figure 2 shows the small range of applicability

of Reference 1, as given by Region I, while the present study covers Regions
1T and 111,

The present work utilizes the data of Reference 2 which provides data for
missiles with and without gaps for the present ranges of study. References 3-
5 provide additional experimental data. However, unlike their use in Refer-
ence 1, they cannot be used in this study. Their Mach range and gap heights
were covered and used for the range of interest of Reference 1,

Some earlier analytic work was done, primarily for supersonic speeds.
This work usually neglects viscosity effects, which are very dominant for the
small gaps, and also neglect the fin-body support effects. The present
analysis avoids these two difficult-to-predict phenomena by utilizing measured
data where these effects are both included. Bleviss and Struble® in 1953
presented an inviscid analysis of gap losses for trianqular fins in supersonic
speeds. The analysis is only valid for triangular fins and neglects viscosity
and fin support interference effects. It also assumes a long afterbody
extending beyond the fin location. Mirles,” almost at the same time, presented
a slender body analytic solution for the fin 1ift losses with the same limita-
tions of: a trianqular fin; long afterbody behind the fins; no viscosity; and
no fin support interference. Dugan and Hikido,® shortly after in 1954, pre-
sented a slender bod% analysis for gap effects for trianqular fins mounted on
long afterbodies with no viscosity or fin support interference effects consi-
dered. A more recent analytic work was done by August® in 1982, who used the
inviscid supersonic analysis of Bleviss and Struble and the questionable
resuits of Hoerner,:U to estimate the normal force losses for streamwise gaps.

Tne application was made to the typical triangular fin of aspect ratio 1.0.
August applied the analysis to the Sidewinder missile geometry at M = 2.5 for

1




the triangular canard fin with fin deflection, The gap area was estimated and
equalized by a streamwise gap area. This application was done during the

development of a fast aerodynamic design code. Sun, et al,'! in 1984, re-
iterated the results of August and made an application to a missile configur-

ation at M = 1,2 and 2.0 using the same computer code, In both cases of
References 9 and 11, no details of the geometry and test conditions were
given; nor was a systematic calculation procedure stating the limitations and
restrictions disclosed,

It is the purpose of this work to systematically account for the lift #or
normal force at zero angle of attack) loss due to streanwise fin-body gaps for

large and small gaps in both the transonic and supersonic speed regimes, This
work complements the earlier work of Refererce 1 and completes the coverage of
the fin loss for ali speed regimes and most gap heights of practical interest,

11, ANALYSIS

Two distinct areas of analysis are performed. The first is for large qgaps
(g/D 2 0.08) in transonic speeds (0.8 < M < 1.2). The second is for “super-

sonic speeds (1.2 < M < 4) and for any size gap (both small and large), For a
body-tail combination one can model the effects of gaps by writing!:

Cngy = Ong T FNVF = (Ky(ay + (Kg(m)) + Oy (1)

where the FNF is the Fin MNormal Fforce correction factor (0 < FNF < 1,0) and
defined (for small a) &3: — -

Nf
FNF = '8 = o'g (2)

Cn Ch
a

f

where CNf is the normal force coefficient of the fin in the presence of a gap
9
height llgll.

The gap effect for an unknown case, FNFZ, was correlated to the value of a
known case, FNF;, by the relation:

FNF, = CF + FNFy (3)

where CF is the lorrelation Factor written as:

CF = (SF - AF « GF - CSF « BF) (4)




where SF, AF, GF, CSF and BF are the shape, fin area, gap, Epord(gpan, and
boundary layer factors, respectively.

The subscripts 1 and 2 will be used throughout this work to denote the
known and unknown cases, respectively.

1. LARGE GAPS (g/D > 0.08) IN TRANSONIC SPEEDS (M = 0.8-1.2)

This analysis modifies the expressions of Reference 1 which is only valid
for small gaps (g/D < 0.08)., For large gaps, it was found that only modifica-
tions to the shape, gap and chord/span factors were required. The new forms
for these factors are:

T 0.76A, + Ay 0.28R,0 (Ayy = Ayy) ] Wo.as
+
F =<_i A22 > (0.5b2c2)(0.5b2c2 - ﬂ.‘Sblc1 L
0.76R)q * Alf) . 0.28R)4(Ryp - Apy) (5)
L L(\ A1 (0.5by¢1) (0.5by¢, - 0.5by¢y) |
¢

(9/M\8
GF = [ ———
((g/ﬂ)z (5b)
t\ \ c 1,5
CSF = ///t(gg)<z§> (5¢)
1/ '\

The remaining two factors, AF and BF are unchanged and are given by the
expressions-:

A
AF = — (Sd)
Ay
and /6 .88
LE2
BF = ( > (5e)
Sla

where the boundary layer thickness, GLE’ was estimated by the familiar form!?

for turbulent boundary layers in axisymmetric tubes:

X
) LE
6LE1 = _0.37

.

R .2
( €XLEl




The reference case for FNF1 is the triangular fin of aspect ratio 1.5 of
Reference 2 with (g/D)l = 0.06, by = 0.525 inch, ¢y = 1.4 inch, Ajy = 0.3675
(inch)2, A,q = 0.3A75 (inch)2, and FNFy = 0.795.

One would notice that the three new expressions (5a, 5b, 5c) represent
simple modifications to the original expressions of the small gaps. The power

of 0.85 was used instead of 1.0 for the shape factor, SF. The GF factor power
was simplified to 0.2 instead of the earlier form: ‘

1
L [(8/0 ) (te/m)p - 0.04
o (g/0), 0.05

Finally, the power 1,5 was used in the CSt iactor, Equation (5¢c), instead of
1.0.

The new GF function for large gaps differs significantly in value compared
to the corresponding GF function of Reference 1 for small gaps. The two func-
tions are plotted in Figure 3, This large gap model must be used for g/D >
0.08, while the small gap model must be used for g/D < 0,06. For 0.06 < g/D
0.98 either function may be used, but only together with 1its associate
forrulae,

One should notice the absence of Mach number dependency, a fact which was
established in Reference 1 for the transonic speed regime (M = 0,8-1,2)., This
observation will not be true for the supersonic speed regime, as will be shown
next,

2. LARGE AND SMALL GAPS IN SUPERSONIC SPEEDS (M = 1.2-4.0)

It was found, by examining the data of Reference 2, that the Mach number
independence of FNF can be extended to M = 1.8 as indicated in Figure 4. The
data also showed linear behavior in the Mach range 1.8 to 4.0, Therefore, if
the value of FNF 1s predicted at M = 4,0 (point D), then the FNF can be easily
computed over the supersonic¢ region between M = 1,2 and 4.0,

The data available at Mach 4.0 in Reference 2 were less in number than
those aveilable from the same reference for M = 3,0 (point C). Therefore, the
correlation was based on the data at M = 3,0, The model then linearly extends
the value to M = 5,0 as shown in Figure 4, The value of FNF at M = 1,8 (point
B) is already known for small gaps (Reference 1) and for large gaps (from the
above section).

The FNF model at Mach 3.0 was constructed in a similar manner as that of
Reference 1, however, with some parameters being changed. First, the shape

factor was not influential and the Reynolds number dependency was very weak.
The wind tunnel data correlated better using the aspect ratio parameter, AR,

rather than the previously used area factor, Also, the chord/span parameter
showed a direct dependency only on the fin root chord c. he fin span

parameter was ahsorbed (implicitly) in the aspect ratio parameter,




Finally, the FNF2 at Mach 3.0 was obtained as:

FNF CF « FNF
2|M=3 1|M=3

15 /A o2 B
[((9/0)1) ( R2> fl . FNFll '
(9/0)2 AR, <, M=3

The reference case values are the values for the case of the triangular fin of
Reference 2 at M = 3 with the following parameters:

(6)

(9/D)y = 0.06, ARy = 1.5, ¢ = 1.4 inch,

(7)

by = 0.525 inch, and FNF1| = 0.851 .
4 ES M:3

With the given geometric parameters of the given fin (2) [(g/D)Z; AR,; and
c2], one can directly calculate FNF2|M 3 . Then, for any value of Mach

nunber, the linear model of Fiqure & is used to determine the corresponding
FNF, value, Equation (1) can then be used to calculate the effective normal

force for the body-tail combination with the specified gap height.

ITI. RESULTS

The results provided here are fnr the configurations and test conditions
of Reference 2. The fin geometries and the wind tunnel conditions were
provided in detail in Reference 1.

1. LARGE GAPS, TRANSONIC SPEENS (M = 0.8-1.2)

A11 cases of Reference 2 were stidied. Six cases with large gap heights
of 0.12D, 0.16D, 0.20D and 0.250, fo~ fins with aspect ratios of 0.5, 0.75,

1.0 and 1.5 were computed.

Figure 5 shows the results for the FNF loss factor for the triangular fin
of AR = 1.5 and a large gap height of 0.12D, The result of the expression of

Equation (5) fits the data very well., The fin effectiveness factor computed
(FNF) was 0,69, thus indicating a 31% loss in 1ift due to the gap.



Fiqure 6 shows the results for the same fin; but at the larger gap height
of 0.200, The agreement is excellent between the data and the fit provided by

the given correlation, A 38% 1ift loss is observed.

Figqures 7 and 8 show the results for a rectangular fin with an aspect
ratio of 1.0 and gap heights of 0,160 and 0.25D. The fin effectiveness is
0.70 and 0.64, indicating corresponding lift losses of 30% and 36%, respec-
tively. The results agree with the data very well,

Figures 9 and 10 show the results for a rectangular fin of AR = 0,5 at gap
heights of 0.12D and 0.200. Even at this very smal) aspect ratio, the results
of the established expressions are in excellent agreement with the experiment-
al data. The fin lift effectiveness is 0.76 and 0.69, indicating correspond-
ing 1ift losses of 24% and 31%, respectively.

2. LARGE AND SMALL GAPS, SUPERSONIC SPEEDS (M = 1.2-4.0)

A1l test cases of Reference 2 were analyzed, Overall twelve cases were
utilized, four of them are for small gaps and eight are for large gaps.

Figqure 11 shows the results for a triangular fin of AR = 1.5 with a small
gap height of 0,060, The linear model gave very good agreement with the data.

Aiso the extrapoiation at M = 4 proved to be very acceptable. The results
indicate a 20% 1ift loss for transonic speeds, a loss of 15% at M = 3.0, and a
loss of 11% at M = 4.0,

Figures 12 and 13 show the results for the same fin with large gap height
settings of 0.12D and 0.20D, respectively. The results of the correlation

expression fits the data with very good agreement.

Figures 14, 15 and 16 are for a rectangular fin of AR = 1.0, at gap height
settings of 0.08D, 0.16D and 0.250. The results compare well with the wind
tunnel data. HNotize the increase in the 1ift losses in the transonic speeds
from 22°% to 30% 10 37% with the increase in gap height,

Figures 17, 18 and 19 are for a rectangular fin of AR = 0.75 and at gap
height settings of 0.06D, 0,120 and 0.20D. The results are generally satis-

factory. Note that the 1ift losses are 50% for the large gap of 0,200, in the

transonic speed regime, This loss was only 30% and 43% when the gaps were
0.06D and 0.120, respectively,

In general, the results appear very acceptable, For the cases considered,
1ift losses are predicted within seven percent or less. All the results for

ghe eighteen cases are tabulated in Table 1, together with the wind tunnel
ata.




TABLE 1. Results of the Present Correlations and
Comparison with Wind Tunnel Data.

FNF FNF
Case Wind Tunnel Present Percent
No. Case Conditions Data Correlations | Difference
(Ref. 2)
1. Transonic Speeds,
Large Gaps:
1 AR = 1.5 g/D = 0,12 0,709 0.692 -2.4%
2 AR = 1,5 g/D = 0,20 0.627 0.625 -0.4%
3 AR = 1,0 g/D = 0,16 0,688 0.703 +2.2%
4 AR = 1.0 g/D = 0.25 0.634 0.643 +1.4%
5 AR = 0,5 g/b = 0,12 0,766 0.764 -0,3%
6 AR = 9.5 /D = 0.20 0,677 0.689 +1.8%
11. Supersonic Speed (M = 3),
lLarge and Sm21? Gaps:

7 AR = 1.5 g/D = 0.N6 0.851 0.851 0.0%
8 AR = 1.5 g/D = 0,12 0.775 0.767 -1.0%
q AR = 1.5 q/D = 0,20 N.685 0.710 +3.6%
in AR = 1.N g/D = nN.N8 N.850 n.88N +3.6%
11 AR = 1,0 g/h = 0.16 n,81A N.791 -3.8%
12 AR = 1.0 g/N = 0,25 0.767 0.742 -3.1%
13 AR = 0,75 g/D = 0.N6 N.734 n,740 +0, 8%
14 AR = 0,7% q/N = 0,12 N.691 N.677 -2.0%
15 AR = 9,75 g/D = 0,20 0.659 0.619 -6.1%
16 AR = 0,50 ¢g/D = 0,06 0.724 0.682 -5.89
17 AR = (,,50 q/D = 0.12 0.620 0.613 -1.1%
18 AR = 0,50 g/D = 0,20 0.534 0,571 +6.9%

IV, SUMMARY AND CONCLUSIONS

An algebraic model was established, based on wind tunnel data correla-
tions, that predicts tiie normal force losses for fins with large fin-body gaps
in transonic and supersonic speeds. The present study covers a much larger
range of Mach number and gap heights than those available in the present
literature, The results obtained provide very good agreement with the wind
tunnel data, This work is for supersonic speeds and provides the missile/pro-

jectile designer with a fast prediction methed to calcuiate fin effectiveness
in the presence of streamwise gaps.




The analysis covers the Mach range 0.8 < M < 4,0 and extends the applica-
bility to both small and large fin gap heights. The model can be used up to
M = 5.0 with care. It has not been validated below M = 0,7 and should not be
used in that region. The models were validated using eighteen cases from wind
tunnel tests. The model! is established in simple algebraic formulae that can
be easily programmed into any fast aerodynamic prediction code for missiles
and projectiles. It is a very satisfying achievement to be able to model a
highly complex problem with such simple models,

8
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LIST OF SYMBOLS

fin total surface area (one side only)
fin partial surface area (one side only)
fin aspect ratio, (2b)2/S

fin surface area (one side only of one fin panel
fin area correlation factor

streamwise gap area for one fin panel
fin semi span (without a gap)

a prescribed fin height (without a gap)
boundary layer correlation factor

fin root chord length

overall fin correlation factor

normal force coefficient (based on the body reference
area) = normal force/qSpet

fin (and its interference) normal ferce coefficient based
on the body reference area

fin (and its interference) normal force coefficient, in
presence of a fin gap "g"

normal force slope coefficient (per radian), 3Cy/3a

fin (and its interference) normal force slope coefficient
(per radian)

fin (and the interference) normal forces slope coefficient,
in presence of a fin gap "g" (per radian)

fin chord and span correlation factor
body diameter

fin normal force 1oss_£§ctor, due to presence of a fin

gap "g
gap height between fin root chord and body surface
fin gap corre]ation.jpctor

Mach numher of projectile
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XLe*Le1*Le

Greek Symbols

5
SR
SLerfler e
Subscript

9

LIST OF SYMBOLS (Continued)

dynamic pressure of the flow (0.5 pU2)
Reynolds number of the projectile per unit lengthp U_/u_
local Reynolds number of the projectile flow, p Ux/u,

fin surface area éone side) of two fin panels connected
without gaps and body diameter

body reference area, nN2/4
fin shape correlation factor
distance, along the body axis, from the nose tip

distance, along the body axis, from the nose tip to the
leading edge of a fin panel, at the fin root section

boundary layer thickness

boundary layer thickness at the leading edge of the fin
root section

indicates the presence of a gap between fin root chord and
body surface
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